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(57) ABSTRACT

A system and method for performing a query operation on a
pair of relations in a database system coupled to a heteroge-
neous system (HS) is disclosed. Assuming that that pair of
relations is partitioned and already loaded into the HS, the
database system receives a query on the pair of relations and
based on the type of query operation computes the cost of
performing the query operation on the database alone or the
costs of performing the query operation with the assistance of
the HS, each of the costs corresponding to a particular algo-
rithm. If the costs indicate that the HS improves the perfor-
mance of the query operation, then the HS computes portions
of the operation, and returns the results back to the database
system. If any parts of the relation are out of sync with the
database system, the database system performs operations to
maintain transactional consistency.
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1
PUSHDOWN OF SORTING AND SET
OPERATIONS (UNION, INTERSECTION,
MINUS) TO A LARGE NUMBER OF
LOW-POWER CORES IN A
HETEROGENEOUS SYSTEM

FIELD OF INVENTION

The present application relates generally to performing
queries in a database system and more particularly to per-
forming queries in a database system with the assistance of a
heterogeneous system, based on a cost model.

BACKGROUND
Sort and Set Queries on Large Relations

Certain types of sorting operations on a relation and set
operations on pairs of relations create performance problems
when the relations involved are very large. In the case of
sorting, a current approach splits the relations into subsets,
which are recursively sorted, and then merges the resulting
subsets into a final result. For very large relations, it is likely
that at the various stages of execution, only subsets of the
relations involved are kept in memory and other subsets
awaiting processing are kept on disk.

Divide and conquer algorithms, such as above, are well
suited for taking advantage of increased parallelism in mod-
ern CPUs. However, there is a limit on the degree of parallel-
ism that can be achieved in practice when query engines
operate on data stored in local memory and disks. The prac-
tical degree of parallelism remains relatively low even for
most common clustered databases.

Improving the performance of such operations typically
involves increasing the number of CPUs working on the
operation. These CPUs are expensive, specialized for a par-
ticular operation, and have high power consumption.
Heterogeneous Systems

For sort and set operations on large relations, database
systems can benefit from Heterogeneous Systems (HS).
These systems are ones with a large number of disk-less
compute nodes, each with its own main memory, and a high-
speed interconnect among the nodes. As the number of nodes
is very large, the amount of memory aggregated over all of the
nodes is also very large. The database system using the HS
has access to an in-memory representation of the relation in
the HS and to persistent storage where the relation is stored.

Heterogeneous Systems are often organized in the form of
a set of clusters of hierarchies, each cluster having a tree-like
structure. Each leaf in the tree has a compute node and
memory and is connected via switches that reside at multiple
levels in the tree. Compute nodes in the hierarchy are built for
both very efficient processing of a well-defined set of query
primitives and low power consumption. The types of proces-
sors at each of the compute nodes can be different from
processors elsewhere in the hierarchy or from processors in a
database system that connects to the heterogeneous system.

In one embodiment, a hierarchy has a total of 2000 com-
pute nodes and a total of 10 terabytes (IB) of memory dis-
tributed over the nodes capable of fitting large relations. In
that embodiment, three levels of switches couple the tree-like
cluster together and a link, such as Infiniband, couples the
cluster to the database system.

A heterogeneous system offers many benefits, such as a
very high degree of parallelism, high throughput, and low
power for sort and set operations on large relations. However,
a heterogeneous system may have cost-benefit tradeoffs in its
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use. Cost-benefit tradeoffs include comparison of the cost of
loading portions of the relation into the heterogeneous system
and collecting the results with the benefits of any improve-
ment in the time and power consumed when the heteroge-
neous system assists in the group-and-aggregate operation.
Additionally, because the heterogeneous system has no per-
sistent storage for storing redo logs, the database system
incurs a cost to assure transactional consistency.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

SUMMARY

Performance of sort and set operations are improved by
partitioning the relations and moving the partitions to a het-
erogeneous system, which drastically increases the degree of
parallelism at which sorting and set operations execute.

The database system uses a number of criteria to decide
when the assistance of the cluster improves performance and
modifies the sort and union operations for operation in the
heterogeneous system.

The database system provides a query processing infra-
structure, statistics including histograms and cardinality esti-
mations, and a query optimizer. An embodiment adds a cost-
based optimizer to the database system and a modified row
source for sort and set operations to account for the database
system consuming and transforming types of the relation
collected from the cluster.

One embodiment is a computer system for performing a
query operation on a pair of relations where the computer
system includes a database system and a heterogeneous sys-
tem (HS). The HS is coupled to the database system and
includes a plurality of compute nodes arranged in one or more
hierarchies, where each hierarchy of the one more hierarchies
has a plurality ofleaf nodes, a plurality of intermediate nodes
and a root node and each of the plurality of leaf nodes is
coupled to an intermediate node and each of the intermediate
nodes is coupled to either another intermediate node or to the
root node. The database system is configured to receive a
request to perform the query operation on the pair of relations,
determine a type of query operation from the request, com-
pute a cost of performing the query operation on the database
system alone, compute one or more costs of performing the
query operation on the database system with assistance of the
HS, where each of the one or more costs corresponds to a
particular algorithm for performing the query operation, and
where portions of the query operation on the pair of relations
can be performed on one or more of the plurality of leaf nodes,
the plurality of intermediate nodes, or the root node in each
hierarchy. The database system is further configured to com-
pare the costs to determine whether to use the assistance of the
HS for the requested query operation, select for the query
operation an algorithm with the lowest cost based on the
comparison, and perform portions of the query operation in
accordance with the selected algorithm on the pair of rela-
tions. The HS is configured to perform portions of the query
operation in accordance with the selected algorithm on the
pair of relations on one or more of the plurality of leaf nodes,
the plurality of intermediate or switch nodes, the root node,
and transmit results of the query operation to the database
system.
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DRAWINGS

In the drawings:

FIG. 1 depicts an example hierarchical system coupled to a
database system;

FIGS. 2A and 2B depict flow charts for the various steps of
an embodiment;

FIG. 3 depicts the details of the UNION ALL algorithm;

FIG. 4 depicts the details of the UNION1 algorithm;

FIG. 5 depicts the details of the UNION 2 algorithm;

FIG. 6 depicts the details of the A1GM algorithm;

FIG. 7 depicts the details of the A2GM algorithm;

FIG. 8 depicts the details of the A1G algorithm;

FIG. 9 depicts the details of the A2G algorithm; and

FIG. 10 depicts an example computer system;

DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in orderto provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Overview

FIG. 1 depicts an example heterogeneous system HS. The
HS system includes a database system 102 and a plurality of
compute nodes 112, 116a-¢, 120a-¢, 124a-e, 128a-¢,132a-¢,
and a plurality of interconnects 114, 118, 122, 126, 130. The
compute nodes 112, 116a-¢, 120a-¢, 124a-e, 128a-¢, 132a-¢
and interconnects 114, 118, 122,126, 130 are arranged in one
or more hierarchies. For example, one hierarchy includes
compute nodes n0 112, n10-14 1164-¢, n20-n24 120a-¢, n30-
34 128a-e. Nodes n30-34 128a-e are considered leaf nodes,
while nodes n20-24 120a-e and n10-14 1244-e are considered
intermediate or switch nodes and node n0 is considered a root
node.

The operations for which assistance of the HS is sought are
Sort and Set Operations. The Set operations include Union,
Intersection, and Minus. The Union operations include
Union, UnionAll, Unionl, and Union2. Generic operations
are defined and include the ability to perform one or more of
the basic set operations and the sort operation. The Generic
operations include A1GenMembership, A2GenMembership,
AlGen, and A2Gen.

The set operation s in SQL for relations RA and RB have
the following definitions. RA UNION RB is defined as the set
of all tuples in RA or RB, where duplicate tuples are only
reported once. RA UNION ALL RB is defined as the set of all
tuples in RA or RB. RA INTERSECT RB is the set of all
tuples both in RA and in RB. RA MINUS RB is the set of all
tuples in RA but not in RB. All ofthese operations require that
the number, type, and order of columns in RA and RB match.

Generally, a sort or set operation is executed by the data-
base system with the assistance of the HS in the follow man-
ner, where each compute node in the HS acts as a producer of
tuples.

For SORT, each compute node produces records of its
partition of a relation in sorted order.

For UNION ALL, each compute node produces records of
its partition of the relation A followed by records of its parti-
tion of the relation B.

For UNION, each compute node produces first the records
of relation A, sorted and tagged to indicate which relation
they belong to and then records of relation B, sorted and
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4

tagged to indicate which relation they belong to. Alterna-
tively, instead of sorting, a compute node can provide a com-
pact representation of its partition, such as a hash table or a
structure similar to a Bloom filter, which can be used for a fast
membership check.

For INTERSECT, ifrelation A is not larger than relation B,
each compute node produces the common records of relation
A and B and a compact representation of relation A and B.

For MINUS, each node processes the tuples of relation A
that are not n relation B and compact representations of rela-
tion A and B.

Alternatively, the compute nodes produce sorted parti-
tions, without attempting to compute intersections or exclu-
sions, and leave the merging and actual computation to the
database system or intermediary nodes.

Merging Results

In the case of UNION ALL, results from each compute
node may be directly streamed to the top of the hierarchy and
from there to the database query engine, because there is no
further processing needed and no expectation of data reduc-
tion in any intermediary stage. For all the other operations,
within each hierarchy of HS, compute nodes may collaborate
(either directly with other compute nodes, or, if available via
nodes at switches in the hierarchy), and merge their partial
results. Merging at intermediary levels may lower the CPU
usage on the hierarchy host and also on the database system.

In the case of UNION, merging sorted tuples of one rela-
tion A with tuples of another relation B, requires merging
sorted relations of A and eliminating duplicates between the
resulting sorted list from relation A and the other relation B.
If compact representations, such as the membership arrays
described below, of relation A and relation B are used, these
compact representations are merged and then each tuple of
the other relation is checked against the compact representa-
tion.

In the case of INTERSECT, the merged result consists of
the union of passed intermediary results and of those tuples
found in both relations from a node.

Inthe case of MINUS, a merge eliminates tuples in relation
A and in relation B and those in both relation A and B.

Merging at the host in heterogeneous system as well as at
the database system level follows the above rules.

Details

FIGS. 2A and 2B depict flow charts for the various steps of
an embodiment. In FIG. 2A, the database system receives a
request to perform query operation in step 210 on a pair of
relations. The database system determines in step 212 the
type of operation and an optimizer computes the costs of the
operation in step 214 for each of a number of available algo-
rithms based on the determined type and a cost model. The
optimizer compares the costs so that the database system can
determine whether assistance of the hierarchical system HS
would improve performance of the query operation. If so as
determined in step 218, then the database system partitions
the relations and loads the partitions in step 220 into compute
nodes in the HS if the partitions are not already loaded, after
which it activates a row source in step 222. The heterogeneous
system performs operations on its compute nodes throughout
its hierarchy and returns results to consumer processes in the
database system that are established to collect and merge the
results in step 224. After collecting the results, the database
system runs a discrete row source in step 226 to maintain
transaction consistency, if some blocks are out of sync. The
database system then closes the original row source in step
228. If the HS would not improve the results, the database
system alone carries out the operation in step 230.
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Optimizer

FIG. 2B depicts the steps for the optimizer, whose task is to
select the lowest cost execution plan for executing the opera-
tion specified in the query, according to the cost model,
described below. In step 250, the optimizer determines the
type of operation in the query.

If OP=SORT, the optimizer chooses in step 252 the lowest
cost plan among A1G, A2G, and a database sort.

If OP=UNION ALL and if conditions for AGM are met as
determined in step 254, the optimizer selects the lowest cost
plan among A-UNION-ALL, A1G, A2G, A1GM, A2GM and
a database UNION-ALL in step 256. If the conditions for
AGM are not met as determined in step 254, the optimizer
selects the lowest plan among A-UNION-LL, A1G, A2G, and
database UNION-ALL in step 258.

If OP=UNION and if conditions for AGM are met as deter-
mined in step 260, the optimizer selects the lowest cost plan
among UNION1, UNION2,A1G, A2G,A1GM, A2GMand a
database UNION in step 262. If the conditions are not met as
determined in step 260, the optimizer selects the lowest cost
plan among UNION1, UNION2, A1G, A2G and a database
UNION in step 264.

If OP=INTERSECT OR MINUS and if conditions for
AGM are met as determined in step 266, the optimizer selects
the lowest cost plan among A1G, A2G, A1GM, A2GM, and a
database operation in step 268. Ifthe conditions are not met as
determined in step 266, the optimizer selects the lowest cost
plan among A1G, A2G, and the database operation in step
270.

Algorithms for each of the basic operations include a
description of the processing at the node level, the switch/
intermediary node level, and the database level.

RA UNION ALL RB

FIG. 3 depicts the details of the UNION ALL algorithm. At
the node level 302, 304, 306 for the UNION ALL operation,
RA UNION ALL RB, a particular node 302, 304, 306 sends
its partition of relation A, RAi, followed by its partition of
relation B, RBi to its parent node 308.

At the switch/intermediary node 308, the partitions are
forwarded without any additional processing.

Atthe database level 310, no additional processing occurs.
RA UNION1 RB

FIG. 4 depicts the details of the UNIONT algorithm. At the
node level, 402, 404, 406 for the ATUNION operation, RA
UNIONT1 RB, a particular node 402, 404, 406 sorts its parti-
tion of relation A, RAi, and its partition of relation B, RBi, to
create RAi-sorted and RBi-sorted. The particular node then

computes relation QABi=RAi__, ¥ RBi_, ,, which is the
same as the relation RAi_,,,., UNION RBi_,,., except that
each tuple is tagged with an extra bit to indicate whether it
came from the RAi or RBi relation partition. The particular
node then sends the tagged relation QABI to its parent node
408.

At the switch or intermediate node i 408 level for the
A1UNION operation, a particular switch or intermediate
node receives the tagged relations QABi from all of its chil-
dren and buffers these relations. Each of these relations, by
virtue of the operations at the node level, has had any dupli-
cates removed. However, duplicates among the children may
remain. The particular switch or intermediate node then pro-
cesses all of the tagged relations QABI to remove any dupli-
cates among them. Thus, the particular switch or intermediate
node computes U, .74 or: RAJUNION U, .04, RBj, where
U, chiza or « RA] 18 the union of all of the child partitions of
relation A and U; ;74 o, RBj is the union of all of the child
partitions of relation B. This is possible because the tagged
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relation QABI indicates whether a tuple came from the rela-
tion A partition or the relation B partition. If the switch or
intermediate node is at the root of the hierarchy in the HS, the
tags are removed before sending results to the database sys-
tem.

At the database level 410, the data undergo no further
processing. Because any intermediate node waits until it
receives data from all of its children, the intermediate node
can remove all of the duplicates among partitions of relation
A and among partitions of relation B and between them.
RA UNION2 RB

FIG. 5 depicts the details of the UNION2 algorithm. At the
node level 502, 504, 506 for the A2UNION operation, RA
UNION2 RB, a particular node 502, 504, 506 sorts its parti-
tion of relation A, RAi, to create RAi,_,,.,, buffers it and sends
it to its parent node. It then sorts its partition of relation B,
RB4i, to create RBi,,,,,,and sends to its parent all of the tuples
in RBi,,,,.,that are not in the buffered RAi,_,,., i.¢., it elimi-
nates any duplicate tuples between the partitions of relation A
and relation B at the node level.

At the switch or intermediate node level 508, a particular
switch or intermediate node waits to receive the RAi,,,.,
from all of'its children j and buffers these relations. It buffers
any tuples received from RBi,_,,., that might arrive while it is
waiting for all of the RAi__,, ., from its children. For each
RBi,,,.,received from a particular child j, the node checks its
tuples against the buffered RAk_,,., from all children k and
returns to its parent node only those tuples that were not found
in any of the RAk,_,,., This guarantees that the final result
has no duplicates, but does so with less space and longer time
compared to UNIONI.

At the database level 510, no additional processing is
needed.

It should be noted that sorting the relation is done to facili-
tate the removal of duplicates. Any other technique that aids
in the removal of duplicates can be used. For example, if a
histogram of relation A, is available and shows that the rela-
tion has relatively few differently-valued tuples, then a hash
table or a bitmap is a better alternative. In the case of a hash
table, the node computes a hash table of RAi and looks for
duplicate items in the tuples of RBi. In the case of a bitmap,
the node maintains a bitmap, with a length equal to the maxi-
mum number of possible values in RA, the bitmap indicating
which of all of these values are present in RAi. To find a
duplicate tuple in RBi only requires to checking whether the
bitmap position corresponding to the tuple is not 0. All the
positions marked O need not be considered. The type of bit
map that can aid in the removal of duplicates, however, is a
slight modification of a standard bit map to allow for the
possibility of multiple duplicate tuples. Such a bit map is
called a membership representation and is described below.
Membership

A membership representation is a map that keeps track of
the number of tuples having a distinct value. Suppose that two
relations RA and RB have a DATE attribute, which can take at
most 12 distinct values. Let RA have 2M tuples for each
distinct value and RA have 1M tuples for each distinct value.

If a membership representation for RA is

[2M, 2M, 0, 0, 0,0, 0,0, 0, 0, 0, 2M] and

the membership representation for RB is

[0,0,0,0,0,0,1M, 1M, 1M, 1M, 1M, 1M], then:

the membership representation for RA UNION ALL RB is

[2M, 2M, 0, 0, 0,0, 1M, 1M, 1M, 1M, 1M, 3M];

the membership representation for RA UNION RB is

[2M, 2M, 0, 0, 0,0, 1M, 1M, 1M, 1M, 1M, 2M];
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the membership representation for RA INTERSECT RB is

[0,0,0,0,0,0,0,0,0,0,0, IM]; and

the membership representation for RA MINUS RB is

[2M, 2M, 0, 0,0, 0, 0, 0, 0,0, 0, 0].

These succinct representations allow each node i that
receives two succinct representations of the partitions RAj
and RAk, RBj and RBk from children j and k to efficiently
compute membership representations of RAj OP RAk where
OP is any set operation. It is also possible to reconstruct the
original partition RAi from the membership representation.
RAOP,, ;. RB

FIG. 6 depicts the details of the A1GM algorithm. RA
OP, cas RB computes set operations OP on the relations RA
and RB, where OP can be UNION ALL, UNION, INTER-
SECT, or MINUS.

At the node level, for RA OP, ,, RB operation, the par-
ticular node 602, 604, 606 computes a membership represen-
tation of RAi, Membership-R Ai, unless statistics indicate the
membership information is already present in the node. The
node 602, 604, 606 then sends the membership representation
Membership-RAi to its parent node. The node computes the
membership representation of RBi, Membership-RBi, and
sends it to its parent node.

At the switch/intermediate node level 608, the switch or
intermediate node 608 waits for Membership-RAi from all of
its children j and computes the union of those memberships,
Membership-U; ., . RAj. The node waits to receive Mem-
bership-RBi from all of its children j and computes the union
of those memberships, Membership-U; _;..7; o, RBj. If the
switch or intermediate node happens to be the root node, the
node computes Membership-RA OP RB, based on the two
received unions and then expands the Membership-RA OP
RB back into RA OP RB and sends it to the database system.
Ifthe switch or intermediate node is not the root node, then the
nodes sends the two received unions to its parent node.

At the database level 610, no further processing is needed.

Thus, the above algorithm percolates up the tree of nodes in
the cluster the succinct representations of all partitions of RA
and RB, each intermediary node computing the membership
representation of the union of partitions of its children. Only
the root node needs to unpack the succinct representation and
send the results to the database system.

If sending actual tuples over the interconnect becomes a
bottleneck when cost-estimating this plan, the system consid-
ers a simple variant in which the root node sends the mem-
bership information only, leaving the database system to
handle the final computation of unpacking the results.

In order for the above algorithm to operate correctly, a
number of conditions, called AGM conditions, is assumed to
hold. The conditions are that (1) the database system has
statistics on the maximum number NA of values that RA can
take and their range; (2) the database has statistics on the
maximum number NB of values RB can take and their ranges;
(3) NA and NB are relatively small; (4) the database sends this
information, together with the query plan, to the root of the
cluster; and (5) every non-leaf node in the cluster forwards
this information to their child nodes in the cluster.

RA OP,,, RB

FIG. 7 depicts the details of the A2GM algorithm. RA
OP 51, RB computes set operations OP on the relations RA
and RB, where OP can be UNION ALL, UNION, INTER-
SECT, or MINUS.

Atthe node level, a particular node 702, 704, 706 computes
the membership representation of RAi, Membership-RAi,
unless statistics indicate that the membership information is
already present in the node. The particular node 702,704,706
then sends Membership-R Aito its parent node. The particular
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node also computes Membership-RBi, unless statistics indi-
cate that the membership information is already present in the
node. It then sends Membership-RBi to its parent node.

At the switch or intermediary node 708, the switch or
intermediary node 708 waits to receive Membership-RAj
from all of its child nodes j and upon receipt computes Mem-
bership-U; ;.74 or ; RAj, which is the union of all of the
Membership-RAj items from the child nodes. The switch or
intermediary node waits to receive Membership-RBi from all
of'its child nodes j and upon receipt computes Membership-
U, etz or: RBj, which is the union of all of the Membership-
RBj items from the child nodes.

At the database level 710, receive the Membership-
U uta of « RAJ and Membership-U, .., -, RBj items and
compute Membership-RA OP_, RB based on the received
items. The database then expands the Membership-RA
OP ., RB into RA OP ., 5, RB to obtain the final result.

As mentioned before, an alternative strategy of the opti-
mizer is to have each node in the cluster sort its partitions and
leave to the database system the task of executing the set
operations such as UNION, INTERSECT, or MINUS.
RAOP,,;RB

FIG. 8 depicts the details of the A1G algorithm. RAOP,, ~
RB computes set and sort operations OP on relations RA and
RB, where OP can be UNION, INTERSECT, MINUS or
SORT.

Atthe node level, a particular node 802, 804, 806 sorts RAi
into RAi-sorted and RBi into RBi-sorted. The particular node
then sends RAi-sorted and RBi-sorted to the parent node.

At the switch or intermediary node level, the switch or
intermediary node 808 sorts all of its j child RAi-sorted rela-
tions and sends the result to its parent node. The switch or
intermediary node sorts all of its j child RBi-sorted relations
and sends the result to its parent node. If the switch or inter-
mediate node is the root node, the full RA-sorted and RB-
sorted are sent to the database.

At the database level 810, the database computes RA-
sorted OP RB-sorted, where OP is UNION, INTERSECT,
MINUS or SORT. The result is the same as RA OP RB.

In one alternative, the root computes RA-sorted OP RB-
sorted, and the database does no further processing.
RAOP,,; RB

FIG. 9 depicts the details of the A2G algorithm. RA OP ,
RB computes set and sort operations OP on relations RA and
RB, where OP can be UNION, INTERSECT, MINUS, or
SORT.

Atthe node level, a particular node 902,904, 906 sorts RAi
into RAi-sorted and RBi into RBi-sorted. The particular node
902, 904, 906 then sends RAi-sorted and RBi-sorted to its
parent node.

At the switch or intermediary node level, the switch or
intermediary node 908 sorts all of the RAj-sorted coming
from its j children and sends the result to its parent node,
unless the switch or intermediary node is the root node. The
switch or intermediary node 908 sorts all of the RBj-sorted
coming from its j children and send the result to its parent
node. If the switch or intermediary node 908 is the root node,
the node computes RA-sorted OP RB-sorted and sends the
result to the database system.

At the database level 910, the database system receives the
final result.

Cost Model

The chart presents the various parameters used in the com-
putation of costs and benefits of the above described algo-
rithms.
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Parameter Definition Meaning
card(RA) cardinality of RA
card(RB) cardinality of RB
card(RAB) card(RA) + card(RB) sum of cardinalities of RA and RB
card(RAn) card(RA)/n
card(RBn) card(RB)n
card;(RA) distinet cardinality of RA, i.e., number of distinct
values in the entire relation RA
card;(RB) distinet cardinality of RB, i.e., number of distinct
values in the entire relation RB
card; (RAB) sum of distinct cardinalities of RA and RB
card(RA OP RB) cardinality of result of operation
focan rate at which any leaf node n can scan relations of
the signature of RA or RB and send them to the
parent node.
frBscan time for the database to scan the relations
foorsi rate of sorting a partition on a node i
foomnB rate at which database system producer processes
execute sort operation
foponsorceann rate of performing set operation OP in database
system when relations are already sorted; if OP =
sort, then parameter = 0.
foponsorceatis rate of performing set operation OP in HS on sorted
relations
foponmms rate at which the root node in the HS computes the
OP operation based on membership succinet
representations of the relations involved in OP
T opanatis rate at which the root node in the HS can expand a
succinct membership representation into the actual
set of tuples
T opanann rate at which the database system can expand a
succinct membership representation into the actual
set of tuples
foorerzs H £ sort rate in HS (leaf nodes sorting partitions in
N; x Zsortt parallel, followed by parent nodes merge-sorting
P a data from all their children, also in parallel,
followed by root node merge sorting all sorted data
received from its direct children
faro rate at which leaf nodes can compute the
membership succinct representation for relations
of the signature of RA and RB
fars rate at which nodes at level i can merge membership
representations from multiple sources to produce a
representation of the union of the sources
fscan * card(RAn) time spend by node n scanning records of RAn
fscan * card(RBn) time spend by node n scanning records of RBn
LHSI latency on the communication links in the HS
between nodes at a level i and their parent nodes,
where leaf-nodes are considered at level 0 and H is
the height of the cluster tree.
Las 1511 Lis XN; total latency in the HS cluster
i=0 n
Lusos latency on the communication link between the root
of HS and the database system, where the cluster is
such that non-leaf nodes at the same level i have the
same number Ni of leaf-node children
Lps latency on interconnect between producers and
consumers in parallel execution on database system
T e - UNION-ALL focan total time taken to execute A-UNION-ALL in HS

powerHS
powerDB

CHS—A -UNION-ALL

TDB— UNION-ALL

(T +Lys + LHSDB) X

card(RAB)

Ths_a_union_aLL
powerHS

fDB,,.,, x card(RAB)

power required for the HS to operate
power required for the DB to operate

cost of the plan

time to execute operation in database system

10
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-continued

Parameter

Definition

Meaning

CDB— UNION-ALL

Tpp-union-arL

cost to execute the operation in the database system

powerDB
DOP degree of parallelism in database system
Tpacen card(RAB) time for parallel sort of both relations with DOP
fsorpp X ~Dop +  degree of parallelism in database system
(Lpg + foPonsoredn) X
card(RAB)
Tasaic (fyomezzs + Lazs + Lyspe +  time for HS to perform A1G algorithm in HS for
foPOnsorteann) X a set operation OP.
card(RAB)
t1GEN card(RAB) time to compute membership array
Nttty
n
t2GEN H-1 time to merge membership arrays
Z (Las,i + T ie1) X
i=0
card;(RAB)
t3GEN foponams % card;(RAB)  time to compute operation on membership arrays
t4GEN foronumpa x card (RAB)  time to computer operation on membership arrays
in database system
t5GEN (fexpanazzs + Laspa) % time to expand membership arrays back to tuples
card (RAB) in HS
t6GEN (fexpanann + Lasps) X time to expand membership arrays back to tuples
card (RAB) in database system
t7GEN Laspas % card (RAB) latency to obtain results from HS to database system
UNION All

The time taken to execute UNION All is

Jscan

THs-A-UNION-ALL = (T + Lys + LHSDB] x card (RAB).

The optimizer decides to execute the UNION ALL operation
in the HS if

The optimizer decides to execute the A2G algorithm in the HS
if

35
Soponsorteans X card(RAB) —
Lyspp X (card(RAB) — card(RA OP RB))  foponsorieaps X card (RAB)
40 powerHS < powerDB

AIGM
The time taken to execute A1GM in the heterogeneous
system for operation OP is

Sscan/t + Lys + Luspp~ fDB,,, 45
powerHS powerDB Togoas =11 GEN+2 GEN+13GEN+15 GEN.
A2GM
AlG The time taken to execute A2GM in the heterogeneous
The time taken to execute the A1G algorithm in a hetero- 5, system for operation OP is

geneous system for a set operation OP is
Trsar & FeorazstLustLerspatfoponsoreaps)*card
(RAB).

The optimizer decides to execute the A1G algorithm in the
HS if

Ssonis + Lus + Lyspp
powerHS

Jsonpg/DOP + Lpg
powerDB ’

A2G
The time taken to execute A2G in a heterogeneous system
for a set operation OP is

(frorerzstLs)xcard(RAB)+Lysppxcard(RA OP RB).

55

60

65

Tsao6ar~t1 GEN+22GEN+7TGEN+4GEN+:6GEN.

Selection Between A1GM and A2GM
The optimizer decides to execute the A1GM algorithm
versus the A2GM algorithm in the HS if

Thsa2am y Thsaiom
powerHS = powerHS"

This occurs when the overhead of the database system
performing the operation on succinct representations fol-
lowed by an expansion versus the HS performing it is less
than the overhead of sending full records rather than succinct
representations over the interconnect between the cluster and
the database system.
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Example

Consider a cluster with 256 leaf nodes and a single level in
the tree (H=1). Assume, as a simplification, that [.,,;=0 and
DOP=1. If the compute power of both leaf and root nodes is
about Yio of that of the database system, ie., f,,, .=
1,51 =10x1, ,,pz, then the optimizer chooses sorting in the
cluster, i.e., A1G, which for SORT is the same as A2G. versus

sorting in the database system if

Lyso
5g *Lusps < (powerfracrion T 356 10) X fronDs-

If'the cluster is not operating at least 10.04 times the power
for the database system, then offloading to the cluster should
not be done. This example shows that always choosing the HS
is not a good strategy.

In most systems, it is expected that the cluster operates at
about 40 times that of the power required by the database
system. For such systems, the optimizer chooses to use the HS
for the SORT if

Lyso
R + Lyspp < (30— 0.04)x fxortDB =29.9% fxortDB-

If the cluster can sustain about 8 GB/sec on its intercon-
nect, then the optimizer chooses offloading the SORT opera-
tion to the HS if sorting in the database system is at least
8/29.9=0.268 GB/sec.

A current known benchmark lists the current record for
sorting as 1 TB/minute for a system of 52 nodes, which,
assuming perfect scaling, amounts to an average of 0.32
GB/sec per node. Similar calculations show that if the root
node is of the same compute power as the database node, and
all other assumptions remain the same, then the optimizer
uses the HS for the SORT when the sorting throughput in the
database system is less than 0.25 GB/sec. If the database
system has a sorting throughput of 0.1 GB/sec, then using the
HS gives a twofold improvement in throughput per watt.

If the operation is one in which a reduction (like INTER-
SECT or MINUS) in the number of tuples is expected to occur
and the reduction is about 50% from the leaf-nodes to the root,
the optimizer uses the HS when the operation can be carried
out in the database system at less than 0.10 GB/sec.
Transactional Consistency

Heterogeneous systems do not have a way of permanently
sorting a redo log, so they do not guarantee transactional
semantics. The overall guarantee is that the execution engine
returns output vectors for data as of a snapshot consistent with
that expected by the database system and the block numbers
that are not synchronized with the database system in all
materialized relations involved with the query.

The Fetch Method of a consumer process on the database
side for SORT or SET operations detects whether block num-
bers for skipped blocks are returned as part of sub-query
evaluation. If the number of blocks is small, then a majority of
the blocks in the underlying materialized relations involved in
the operation is in sync with the database system; only a few
blocks are inconsistent between the database system and the
HS. The fetch method then passes block numbers to the query
coordinator.

The query coordinator waits until all consumers are fin-
ished processing their payloads and then gathers the blocks
returned as unprocessed from all consumers. Upon receiving
the unprocessed block numbers, the query coordinator starts
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a special SORT or SET operation row source to specifically
handle these blocks. These row sources are called discrete-
Sort, discreteUnion(ALL), discretelntersect and discreteMi-
nus to distinguish them from standard row sources that take
into account all blocks of the underlying sub-queries or rela-
tions. The discrete row sources are executed entirely by the
query coordinator and are a discrete variant of the underlying
row source. The discrete row source is passed a pointer to the
structures for sorted results or alternative set-membership
compact representations computed during merging of local
results from the producers.

As part of the Fetch Method, Fetch is called on the under-
lying discrete row sources, which eventually call the discrete
table scan row sources for all underlying materialized rela-
tions. The discrete tables scan row sources ignore all blocks
that are not directly passed (for those, the operation has
already been carried out, because those blocks were in sync
with the database system). For all other blocks, the scan is
done as standard, and the discrete parent row sources are
called recursively. The discrete SORT or SET operation fetch
is done as standard, with the only exception that the sorted
structures or membership representations passed at open time
are used. With this method, when the discrete row source is
closed, the passed sort structure contains the final result of the
original SORT execution.

If, at any point during the discrete row source execution,
the system estimates that the overhead of completing the
computation is approximately equal to re-executing the entire
operation solely in the database system, then the query execu-
tion engine can discard all results obtained so far and restart
the execution of the query without the assistance of the HS.
Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 10 is a block diagram that depicts a
computer system 1000 upon which an embodiment may be
implemented. Computer system 1000 includes a bus 1002 or
other communication mechanism for communicating infor-
mation, and a hardware processor 1004 coupled with bus
1002 for processing information. Hardware processor 1004
may be, for example, a general-purpose microprocessor.

Computer system 1000 also includes a main memory 1006,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 1002 for storing information
and instructions to be executed by processor 1004. Main
memory 1006 also may be used for storing temporary vari-
ables or other intermediate information during execution of
instructions to be executed by processor 1004. Such instruc-
tions, when stored in non-transitory storage media accessible
to processor 1004, convert computer system 1000 into a spe-
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cial-purpose machine that is customized to perform the
operations specified in the instructions.

Computer system 1000 further includes a read only
memory (ROM) 1008 or other static storage device coupled to
bus 1002 for storing static information and instructions for
processor 1004. A storage device 1010, such as a magnetic
disk or optical disk, is provided and coupled to bus 1002 for
storing information and instructions.

Computer system 1000 may be coupled via bus 1002 to a
display 1012, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 1014, includ-
ing alphanumeric and other keys, is coupled to bus 1002 for
communicating information and command selections to pro-
cessor 1004. Another type of user input device is cursor
control 1016, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and command
selections to processor 1004 and for controlling cursor move-
ment on display 1012. This input device typically has two
degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify posi-
tions in a plane.

Computer system 1000 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 1000 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 1000 in response to processor
1004 executing one or more sequences of one or more instruc-
tions contained in main memory 1006. Such instructions may
be read into main memory 1006 from another storage
medium, such as storage device 1010. Execution of the
sequences of instructions contained in main memory 1006
causes processor 1004 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc-
tions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 1010. Volatile
media includes dynamic memory, such as main memory
1006. Common forms of storage media include, for example,
a floppy disk, a flexible disk, hard disk, solid state drive,
magnetic tape, or any other magnetic data storage medium, a
CD-ROM, any other optical data storage medium, any physi-
cal medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, NVRAM, any other memory
chip or cartridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
1002. Transmission media can also take the form of acoustic
orlight waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 1004
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid-state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 1000 can receive the data on the telephone line and use
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an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 1002. Bus 1002 carries the data to main memory 1006,
from which processor 1004 retrieves and executes the instruc-
tions. The instructions received by main memory 1006 may
optionally be stored on storage device 1010 either before or
after execution by processor 1004.

Computer system 1000 also includes a communication
interface 1018 coupled to bus 1002. Communication inter-
face 1018 provides a two-way data communication coupling
to a network link 1020 that is connected to a local network
1022. For example, communication interface 1018 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data com-
munication connection to a corresponding type of telephone
line. As another example, communication interface 1018 may
be a local area network (LAN) card to provide a data com-
munication connection to a compatible LAN. Wireless links
may also be implemented. In any such implementation, com-
munication interface 1018 sends and receives electrical, elec-
tromagnetic or optical signals that carry digital data streams
representing various types of information.

Network link 1020 typically provides data communication
through one or more networks to other data devices. For
example, network link 1020 may provide a connection
through local network 1022 to ahost computer 1024 or to data
equipment operated by an Internet Service Provider (ISP)
1026. ISP 1026 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 1028. Local
network 1022 and Internet 1028 both use electrical, electro-
magnetic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net-
work link 1020 and through communication interface 1018,
which carry the digital data to and from computer system
1000, are example forms of transmission media.

Computer system 1000 can send messages and receive
data, including program code, through the network(s), net-
work link 1020 and communication interface 1018. In the
Internet example, a server 1030 might transmit a requested
code for an application program through Internet 1028, ISP
1026, local network 1022 and communication interface 1018.

The received code may be executed by processor 1004 as it
is received, and/or stored in storage device 1010, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A method of performing a query operation on a pair of
relations in a database system coupled to a plurality of com-
pute nodes, the method comprising: receiving a request to
perform the query operation on the pair of relations; deter-
mining a type of query operation from the request;

computing a first cost of performing the query operation on

the database system without assistance of the plurality of
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compute nodes, each compute node of the plurality of
compute nodes comprising at least one processor and its
own main memory;

computing one or more second costs of performing the

query operation on the database system with assistance
of the plurality of compute nodes using one or more
algorithms,

wherein the plurality of compute nodes is arranged in one

or more hierarchies each comprising a root compute
node, a plurality ofleaf compute nodes, and a plurality of
intermediate compute nodes,

wherein performing the query operation on the database

system with the assistance of the plurality of compute
nodes comprises performing portions of the query
operation on one or more of the plurality of compute
nodes;

comparing the first cost and the one or more second costs to

determine whether to perform the query operation with
the assistance of the plurality of compute nodes using a
particular algorithm of the one or more algorithms;

if it is determined to perform the query operation with the

assistance of the plurality of compute nodes, performing
portions of the query operation in accordance with the
particular algorithm on the pair of relations on one or
more of the plurality of compute nodes.

2. The method of claim 1, further comprising maintaining
transaction semantics for the query operation in the database
system.

3. The method of claim 1,

wherein the query operation is a SORT operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the SORT operation using an A1G
algorithm; and

computing a cost of the SORT operation using an A2G
algorithm.

4. The method of claim 1,

wherein the requested query operation is a UNION ALL

operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the UNION ALL operation using an
A-UNION-ALL algorithm;

computing a cost of the UNION ALL operation using an
A1G algorithm; computing the a cost of the UNION
ALL operationusing an A2G algorithm; and if A1IGM
conditions are met:

computing a cost of the UNION ALL operation using an
A1GM algorithm; and computing the a cost of the
UNION ALL operation using an A2GM algorithm.

5. The method of claim 1,

wherein the query operation is a UNION operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the UNION operation using an
A-UNION algorithm;

computing a cost of the UNION operation usingan A1G
algorithm;

computing a cost of the UNION operation using an A2G
algorithm; and if A1GM conditions are met:
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computing a cost of UNION operation using an A1GM
algorithm; and

computing the a cost of the UNION operation using an
A2GM algorithm.

6. The method of claim 1,

wherein the query operation is a MINUS or INTERSECT

operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the MINUS or INTERSECT opera-
tion using an A1G algorithm;

computing a cost of the MINUS or INTERSECT opera-
tion using an A2G algorithm;

computing a cost of the MINUS or INTERSECT opera-
tion using an A1GM algorithm; and

computing a cost of the MINUS or INTERSECT opera-
tion using an A2GM algorithm.

7. A computer system for performing a query operation on
a pair of relations, the system comprising:

a database system; and

a plurality of compute nodes arranged in one or more

hierarchies coupled to the database system, each com-

pute node of the plurality of compute nodes comprising

at least one processor and its own main memory;

wherein each hierarchy of the one more hierarchies
comprises a plurality of leaf compute nodes, a plural-
ity of intermediate compute nodes and a root compute
node;

wherein the database system is configured to:

receive a request to perform the query operation on the
pair of relations;

determine a type of query operation from the request;

compute a first cost of performing the query operation
on the database system without assistance of the plu-
rality of compute nodes;

compute one or more second costs of performing the
query operation on the database system with assis-
tance of the plurality of compute nodes using one or
more algorithms,

wherein performing the query operation on the database
system with the assistance of the plurality of compute
nodes comprises performing portions of the query
operation on one or more of the plurality of compute
nodes;

compare the first cost and the one or more second costs
to determine whether to perform the query operation
with the assistance of the plurality of compute nodes
using a particular algorithm of the one or more algo-
rithms;

if it is determined to perform the query operation with
the assistance of the plurality of compute nodes, per-
form portions of the query operation in accordance
with the particular algorithm on the pair of relations
on one or more of the plurality of compute nodes.

8. The system of claim 7, wherein the database system is
further configured to maintain transaction semantics for the
query operation in the database system.

9. The system of claim 7,

wherein the query operation is a SORT operation;

wherein the database being configured to compute the one

or more second costs of performing the query operation

on the database system with the assistance of the plural-

ity of compute nodes includes being configured to:

compute a cost of the SORT operation using an A1G
algorithm; and
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compute a cost of the SORT operation using an A2G
algorithm.

10. The system of claim 7,

wherein the query operation is a UNION ALL operation;

wherein the database being configured to compute the one

or more second costs of performing the query operation

on the database system with the assistance of the plural-

ity of compute nodes includes being configured to:

compute a cost of the UNION ALL operation using an
A-UNION-ALL algorithm;

compute a cost of the UNION ALL operation using an
A1G algorithm;

compute a cost of the UNION ALL operation using an
A2G algorithm;

compute a cost of the UNION ALL operation using an
A1GM algorithm; and

compute a cost of the UNION ALL operation using an
A2GM algorithm.

11. The system of claim 7,

wherein the query operation is a UNION operation;

wherein the database being configured to compute the one

or more second costs of performing the query operation

on the database system with the assistance of the plural-

ity of compute nodes includes being configured to:

compute a cost of the UNION operation using an
A-UNION algorithm;

compute a cost of the UNION operation using an A1G
algorithm;

compute a cost of the UNION operation using an A2G
algorithm;

compute a cost of the UNION operation using an A1GM
algorithm; and

compute a cost of the UNION operation using an A2GM
algorithm.

12. The system of claim 7,

wherein the query operation is a MINUS or INTERSECT

operation; wherein the database being configured to

compute the one or more second costs of performing the

query operation on the database system with the assis-

tance of the plurality of compute nodes includes being

configured to:

compute a costofthe MINUS or INTERSECT operation
using an A1G algorithm;

compute a costofthe MINUS or INTERSECT operation
using an A2G algorithm;

compute a costofthe MINUS or INTERSECT operation
using an A1GM algorithm; and

compute a costofthe MINUS or INTERSECT operation
using an A2GM algorithm.

13. A non-transitory computer-readable medium carrying
one or more sequences of instructions for performing a query
operation on a pair of relations in a database system coupled
to a plurality of compute nodes, wherein execution of the one
or more sequences by one or more processors causes:

receiving a request to perform a query operation on the pair

of relations;

determining a type of query operation from the request;

computing a first cost of performing the query operation
on the database system without assistance of the plu-
rality of compute nodes, each compute node of the
plurality of compute nodes comprising at least one
processor and its own main memory;

computing one or more second costs of performing the
query operation on the database system with assis-
tance of the plurality of compute nodes using one or
more algorithms,
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wherein the plurality of compute nodes is arranged in
one or more hierarchies each comprising a root com-
pute node, a plurality of leaf compute nodes, and a
plurality of intermediate compute nodes,

wherein performing the query operation on the database
system with the assistance of the plurality of compute
nodes comprises performing portions of the query
operation on one or more of the plurality of compute
nodes;

comparing the first cost and the one or more second costs
to determine whether to perform the query operation
with the assistance of the plurality of compute nodes
using a particular algorithm of the one or more algo-
rithms;

if it is determined to perform the query operation with
the assistance of the plurality of compute nodes, then
performing portions of the query operation in accor-
dance with the particular algorithm on the pair of
relations on one or more of the plurality of compute
nodes.

14. The computer-readable medium of claim 13, wherein
the one or more sequences of instructions include instructions
whose execution by the one or more processors further causes
maintaining transaction semantics for the query operation in
the database system.

15. The computer-readable medium of claim 13,

wherein the query operation is a SORT operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the SORT operation using an A1G
algorithm; and

computing a cost of the SORT operation using an A2G
algorithm.

16. The computer-readable medium of claim 13,

wherein the query operation is a UNION ALL operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the UNION ALL operation using an
A-UNION-ALL algorithm;

computing a cost of the UNION ALL operation using an
A1G algorithm;

computing the a cost of the UNION ALL operation
using an A2G algorithm; and if A1GM conditions are
met:

computing a cost of the UNION ALL operation using an
A1GM algorithm; and

computing a cost of the UNION ALL operation using an
A2GM algorithm.

17. The computer-readable medium of claim 13,

wherein the query operation is a UNION operation;

wherein computing the one or more second costs of per-

forming the query operation on the database system with

the assistance of the plurality of compute nodes

includes:

computing a cost of the UNION operation using an
A-UNION algorithm;

computing a cost of the UNION operation usingan A1G
algorithm;

computing a cost of the UNION operation using an A2G
algorithm; and if A1GM conditions are met:

computing a cost of the UNION operation using an
A1GM algorithm; and
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computing a cost of the UNION operation using an
A2GM algorithm.
18. The computer-readable medium of claim 13,
wherein the query operation is a MINUS or INTERSECT
operation; 5
wherein computing the one or more second costs of per-
forming the query operation on the database system with
the assistance of the plurality of compute nodes
includes:
computing a cost of the MINUS or INTERSECT opera- 10
tion using an A1G algorithm;
computing a cost of the MINUS or INTERSECT opera-
tion using an A2G algorithm;
computing a cost of the MINUS or INTERSECT opera-
tion using an A1GM algorithm; and 15
computing a cost of the MINUS or INTERSECT opera-
tion using an A2GM algorithm.
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